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1 Introduction: Transforming AI through Multi-Distribution Learning

Humans have an exceptional ability to quickly learn new tasks by recognizing patterns and in-
tegrating prior knowledge through shared representations in the brain [66, 30, 8, 18, 20, 9, 59].
Since the early days of AI, researchers have aimed to replicate this multi-task learning capac-
ity [55, 42, 45, 56, 65, 12, 3, 53, 22], yet most recent breakthroughs have come from improving
learning performance on single tasks1 by scaling up models, datasets, and computation [10, 61, 31].
We are now at a critical juncture where further scaling faces multiple challenges. Acquiring
high-quality data is increasingly difficult due to privacy regulations and intellectual property con-
cerns [21, 67, 2]. Worse still, collecting large datasets in fields like healthcare and drug discovery
remains infeasible altogether [15, 16, 50]. Moreover, the resources needed to operate at scale—
amidst diminishing returns—have concentrated power within a few companies, slowing down the
pace of research [7, 4, 1, 74, 5, 64, 37, 23]. Compounding this, current AI systems continue to strug-
gle with bias, lack robustness, and fail to generalize under distribution shifts [4, 57, 62, 25, 63].

My research in Federated Learning (FL) addresses many of these challenges. FL uses decen-
tralized training across agents2, which preserves data privacy, tackles regulatory constraints, and
supports learning across multiple data distributions, thus leveraging the strengths of multi-task
learning3 [41, 40, 28]. Over the past five years, I have contributed to various aspects of FL—
and more broadly multi-distribution learning—including fairness [3, 8], personalization [13],
privacy [15, 14], sequential decision-making [11], strategic agent behavior [4], and communication-
efficient optimization [2, 7, 16, 17, 1, 12, 9, 10]. I have also helped further our understanding
of robustness [6] and continual learning under distribution shifts [5], both crucial for current AI
algorithms. Our work has won accolades such as the Distinguished Paper Award at IJCAI
2024 and the Best Paper Honorable Mention Award at the Federated Learning Workshop at
ICML 2023 while inspiring a plethora of follow-up studies. Beyond research, I have actively shared
developments in the field through a tutorial at UAI 2023 and fostered academic and industry
collaborations by co-organizing a 2023 workshop on FL and privacy.

A central theme of my research is understanding, how learning one task helps another—a
question at the heart of multi-distribution learning. To address this, I combine theoretical frame-
works like min-max complexity with empirical insights to develop efficient algorithms that adapt
to data heterogeneity. While FL has already enabled unprecedented collaboration across many
fields [19, 49, 52, 68, 13, 36, 29, 58, 39, 47], expanding its adoption further requires more scalable,
robust, and provably secure solutions that respect the needs of diverse applications and align with
agents’ incentives. As illustrated in Figure 3, achieving this requires interdisciplinary solutions. My
vision is to develop such solutions that redefine AI’s role as a force for meaningful societal impact.

Outline. This statement presents my vision for advancing multi-distribution learning over the
next five years. To frame this vision, I introduce a taxonomy of the field in Figures 1 and 2, mapping
its connections to related areas and situating my contributions within a broader context. While
real-world applications present a diverse array of challenges, I focus on three key issues: first, in
Section 2, I address learning with known tasks or distributions (A and C in Figure 1); second, in
Section 3, I examine fine-tuning large foundation models in dynamic, multi-user environments (H
and I in Figure 2); and finally, in Section 4, I explore privacy and strategic agent behavior which
are critical challenges to sustainable data markets in AI (c.f., Figure 3).

1 There are notable exceptions like OpenAI’s Whisper [51] that do benefit from multi-task learning. 3 In FL,
different agents share the same objective but differ in their distributions, making learning simpler than usual multi-task
learning. Depending on the application, we use tasks, agents, and distributions interchangeably.
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2 The Role of Collaboration and Personalization: a Tale of Three Regimes

Figure 1: A taxonomy of problems with multiple distributions when all distributions are accessible
during the learning phase. The figure highlights connections to different research areas, real-world
applications, and my contribution to these different problem classes (A-D); c.f. my publications.

The most studied setting in multi-distribution learning is where distributions are fixed in time
and accessible during training (say, via sampling). Assuming there are M such distributions,
{D1, . . . ,DM}, using a loss function4 f(·; ·), we define themth objective as Fm(v) := Ez∼Dm [f(v; z)].
Our aim then is to optimize the following problem for given thresholds {τ1, . . . , τM},

min
w∈Rd

1

M

∑
m∈[M ]

Fm(w)

s.t. Fm(w)− min
w⋆

m∈Rd
Fm(w⋆

m) ≤ τm, ∀ m ∈ [M ]

(C)

There are several ways to motivate (C). When f(·; z) is convex, then different thresholds recover
the multi-objective optimization problem with M objectives [17][13]. Another perspective is to look
at the extremes of (C): (i) when τm’s are set to ∞, (C) recovers the FL objective [40] while (ii)
when τm’s are set to τ⋆ = minw∈Rd maxm∈[M ] Fm(w), (C) recovers the group distributional robust
objective [54, 44]. Thus, (C) interpolates between the utilitarian and egalitarian extremes.

Our results for optimizing (C). In a recent work [3], we propose a general framework for solving
problem (C), given access to oracles that can (approximately) optimize a single objective. While our
work in [3] focused on solving NP-hard combinatorial problems in offline and online settings, I have
also extensively contributed to the design and analysis of learning algorithms for the two extreme
cases (i) and (ii) in problem (C). In particular, I have helped characterize optimal convergence
rates for Local-SGD—the most widely-used method in federated learning (τm = ∞)—and min-max
complexities for various problem classes using intermittently communicating algorithms5 [2, 16, 17,
1, 12, 9, 10]. Our work has been impactful, closing long-standing gaps in these areas that had

4 E.g., in supervised linear regression, given feature-label pairs z = (x, y) ∼ Dm if we use square loss then we can
define f(v;z) := 1

2
(⟨v,x⟩ − y)2. 5 These are algorithms where agents communicate their oracle responses every K

time steps for R rounds, e.g., mini-batch and local SGD.
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persisted for over a decade [38, 73, 72, 60, 34, 35, 33, 71, 24, 70]. In a recent study [8], we also
examined the robust extreme (τm = τ⋆), achieving the tightest convergence guarantees for linear
regression using a second-order algorithm when M is large. Moving forward, I plan to extend these
works on both extremes, addressing existing gaps and adapting to additional applications, but more
importantly, I want to develop general-purpose and efficient algorithms to directly optimize (C)
for machine learning tasks with arbitrary thresholds.

Introducing personalization and characterizing three regimes. Solving (C) can lead to
undesirable outcomes when the heterogeneity between different distributions is high [69, 70] [9, 10].
A ubiquitous way to avoid this while still benefiting from solving multiple tasks is by using two
models: a shared model w ∈ W and a task-specific model θm ∈ C, and then combining them using
an aggregation function g : W × C → Rd [43, 48] which leads to the following problem,

min
w∈W,θ1,...,θM∈C

1

M

∑
m∈[M ]

Fm (g(w, θm))

s.t. Fm (g(w, θm))− min
w⋆

m∈Rd
Fm (w⋆

m) ≤ τm, ∀m ∈ [M ]

(A)

The solutions to (A) are constrained by the choices ofW, C, g, and the optimization algorithm used.
A simple choice is g(w, θ) = w+θ, representing additive personalization [26, 6]. In an upcoming
work [13], we analyze this additive model with τn = ∞ and show that a personalized variant of local
SGD outperforms it under equivalent computation and communication budgets. Moving forward,
I aim to generalize these results to arbitrary thresholds and aggregation functions and explore
personalization through a min-max complexity framework6. To achieve this, we compare two
algorithm classes: consensus algorithms producing a single model and personalized algorithms
yielding M models. We use non-collaborative learning—where each agent optimizes on its own—as
a natural baseline. Given constraints on information or computation, and communication, I want
to characterize three distinct regimes based on data heterogeneity and min-max optimality:

I. Very high heterogeneity: when non-collaborative learning is at least as good as any
personalized or consensus optimization algorithm;

II. Moderate heterogeneity: when some personalized algorithm is strictly better than any
consensus optimization algorithm as well as non-collaborative learning; and

III. Low heterogeneity: when some consensus optimization algorithm is at least as good as
any personalized algorithm and strictly better than non-collaborative learning.

Theorem-of-alternatives. While these regimes appear self-evident, some problems may not
realize all three of them. For instance, we prove that regime II does not exist when estimating
multiple Gaussian means, meaning either not collaborating or consensus optimization is optimal,
with no benefit from intricate personalization [13]. Although our result is for the worst case,
understanding these regimes for different problems can significantly inform the practice and design
of algorithms. Going forward, I aim to study problems beyond mean estimation while incorporating
other factors, such as noise levels, sample sizes, and optimization complexity, into these regimes.

3 Optimizing for Fine-tuning on Unseen Tasks, a.k.a. Learning to Learn

In the previous section, we assumed all distributions would be available during training. However,
this assumption may be too restrictive for many real-world applications, such as training AI models
across billions of smartphones. To model such scenarios, we assume a meta-distribution P over

6 Min-max complexity identifies optimal algorithm performance against worst-case distributions from some family.
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Figure 2: A taxonomy of problems when only some distributions are accessible during the learning
phase through sampling from a meta-distribution. The figure highlights connections to different
research areas, real-world applications, and my contribution to these different problem classes (E,
G, H, I); c.f. my publications.

tasks, where each task m ∼ P is associated with a distribution Dm. If E is a fine-tuning algorithm
that uses N samples from Dm to produce an output θEm ∈ C, then we aim to optimize the following,

min
w∈W

Em∼P,z∼Dm,E
[
f(g(w, θEm); z)

]
, (H)

where g : W × C → Rd is an aggregator function. One common fine-tuning procedure E is to run
N steps of SGD on θ for a model parameterized by g(w, θ). Most existing theory for cross-device
FL examines a simpler form of (H) where N = 0, meaning no fine-tuning occurs on future tasks.
This no-fine-tuning variant of (H) aligns with Problem E in Figure 2 [32] [12, 14]. In practice,
however, models are often fine-tuned directly on client devices, revealing a gap between the theory
and practice of FL. Although a few theoretical works study fine-tuning in this setting, they do not
provide provable benefits of pre-training over random initialization in practical regimes [14, 46]. To
address this gap, I plan to investigate assumptions about the heterogeneity of the meta-distribution
P, such as characterizing its fat tail or solutions that are approximately optimal across tasks.
Specifically, I aim to characterize how small N must be, as a function of the pre-training budget
T 7 and the heterogeneity of P, for pre-training to outperform random initialization consistently.

Learning to learn. The effectiveness of pre-training also depends on what access to P is allowed
during pre-training. A natural approach involves sampling [M ] ∼ P⊗M and solving either problem
(C) or (A) across these M sampled tasks to produce a pre-trained model. This approach suggests
that the considerations about task heterogeneity from the previous section remain relevant and
become even more nuanced when we incorporate fine-tuning in problem (H). When data hetero-
geneity is high, and N is small, solving (A) during the pre-training stage should be preferable.
Conversely, with more similar tasks or more data, (C) may be more effective. However, under-
standing the exact trade-off between these approaches, N , T , and data heterogeneity would require
analyzing the min-max complexity of optimizing (H), which I am interested in pursuing. Notably,

7 Intuitively, this threshold N should decrease as T increases.

4



solving (A) during pre-training resembles meta-learning approaches, as we explicitly encourage the
shared model to capture the information needed for efficient fine-tuning by using the same aggre-
gation function g and constraint set C during both pre-training and fine-tuning. This means that
insights from studying (H) could also address gaps in the theory of meta-learning.

Towards continual learning. In many applications, we can sample from the meta-distribution
P multiple times during training or continuously improve the AI model between deployments.
This makes adjusting for shifts in P over time essential. These shifts may follow predictable
patterns; for instance, when training AI models on smartphones, the distribution P often cycles
between different states since phones typically only train when left charging overnight [69, 27].
Additionally, performative effects may emerge when the data adapts in response to model updates.
For example, using human feedback to train large foundation models can introduce new errors,
so avoiding “forgetting” prior corrections during retraining becomes essential. In recent work,
we investigated this challenge and showed that even simple problems benefit from regularization
during retraining to reduce performative effects [5]. Although many heuristics address these issues,
we still lack a systematic understanding of robust algorithmic foundations for continual learning.
This motivates me to explore how general regularized retraining procedures can effectively leverage
multi-task learning (or fine-tuning) to handle distribution shifts.

Pre-training informed fine-tuning. Finally, I aim to improve the efficiency of the fine-tuning
algorithm E . One of the most widely-used approaches, LORA [26], accomplishes this by encoding
a low-rank structure in the fine-tuned parameters. Our research on low-rank dynamics in neural
network optimization [18, 19] suggests that aligning the initialization of LORA’s parameters with
the low-rank structure in the pre-trained weights could make fine-tuning even faster.

4 Towards Creating Sustainable Data Markets for the Future of AI

So far, we have treated agents and tasks as interchangeable, overlooking that agents often act
strategically in the real world. For example, hospitals that collaborate on training AI models face
privacy regulations and competitive pressures. As a result, hospitals hesitate to collaborate unless
they are sure it is individually rational, meaning the benefits outweigh the costs. A potential
solution is to use (A) or (C) with a threshold set at τn = ϵn, which represents the error an agent
can achieve alone. If this maintains feasibility, it ensures individual rationality, providing further
motivation to study these problems with general thresholds.

Preventing defections. Another related issue arises when agents agree to collaborate but leave
during multi-stage training, abandoning the collaboration once an intermediate model satisfies their
needs. In a recent work [4], we showed that such defections can significantly compromise the final
model’s accuracy and robustness, particularly in applications like medical studies, where models are
often used on future agents without additional fine-tuning. Our work also highlighted that popular
federated learning algorithms like local SGD fail to prevent defections, and we introduced the first
algorithm that avoids defections while converging to an optimum that is shared across agents. I
aim to extend this work to scenarios where agents may misrepresent their data or requirements,
with the ultimate goal being an incentive-compatible collaboration mechanism that ensures agents
truthfully share information and provide quality training updates. This will involve exploring
monetary incentives, data valuation and attribution, and developing a deeper understanding of
legal and economic considerations about compensating updates to a model (c.f., Figure 3).

Provable Privacy at Scale. Privacy remains a critical barrier to data markets, driving my
research on rigorous theoretical guarantees for foundational privacy problems and large-scale, prac-
tical challenges in complex models. Recently, we adapted one of our FL algorithms to incorpo-
rate formal differential privacy (DP) guarantees in the shuffled model [12, 14], which removes the
need for a trusted server, thus broadening DP’s applicability. I aim to develop more such DP
variants that protect against specific attack models relevant to applications in Figures 1 and 2.
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Figure 3: Key research challenges for creating and sustaining
data markets, as studied across multiple disciplines.

We are also working towards meth-
ods that selectively apply differen-
tial privacy (DP), protecting only the
model’s sensitive components while
relaxing constraints elsewhere to im-
prove efficiency. This selective ap-
proach is critical for training large
models, such as diffusion models,
which are prone to memorizing train-
ing data and currently face chal-
lenges in effective differentially pri-
vate training [11]. To address these
issues, we are exploring two direc-
tions. First, inspired by our work
on personalization [13], we aim to
partition the diffusion model into
shared and personal parameters for
early and later de-noising stages, re-
spectively. This approach protects
agents’ data privacy while benefiting
from shared parameters in the chal-
lenging early de-noising phase and is
especially relevant in medical imag-
ing, where data is siloed across hos-
pitals. Second, we are developing architecture-aware techniques for adding DP noise to diffusion
models by identifying components prone to memorization so that the entire model can be released.
This draws inspiration from our work for over-parameterized linear regression, where structural
insights allow for privacy even in infinite dimensions [15]. In the future, I want to advance these
efforts to models beyond diffusion models and tackle other real-world privacy challenges.
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