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Abstract
We study the problems of distributed online and bandit convex optimization against an
adaptive adversary. Our goal is to minimize the average regret on M machines working
in parallel over T rounds that can communicate R times intermittently. Assuming the
underlying cost functions are convex, our results show collaboration is not beneficial if the
machines have access to the first-order gradient information at the queried points. We show
that in this setting, simple non-collaborative algorithms are min-max optimal, as opposed
to the case for stochastic functions, where each machine samples the cost functions from a
fixed distribution. Next, we consider the more challenging setting of federated optimization
with bandit (zeroth-order) feedback, where the machines can only access values of the cost
functions at the queried points. The key finding here is to identify the high-dimensional
regime where collaboration is beneficial and may even lead to a linear speedup in the
number of machines. Our results are the first attempts towards bridging the gap between
distributed online optimization against stochastic and adaptive adversaries.

1. Introduction
We consider the following distributed regret minimization problem on M machines with
horizon T :

min
{xm

t ∈X}m∈[M ]
t∈[T ]

1

MT

∑
m∈[M ],t∈[T ]

fm
t (xmt )− min

x⋆∈X

1

MT

∑
m∈[M ],t∈[T ]

fm
t (x⋆), (1)

where fm
t is a non-negative, convex cost function observed by machine m at time t, and xmt is

the model it plays. This formulation captures distributed learning problems where the data
is generated in real-time but isn’t stored, e.g., mobile keyboard prediction [11, 12] and self-
driving vehicles [7, 20]. We want to solve this problem in the intermittent communication
(IC) setting [29, 31] where the machines work in parallel and are allowed to communicate
R times with K time steps in between communication rounds. The IC setting captures
the expensive nature of communication in collaborative learning, such as in cross-device
federated learning [15, 17].

The IC setting has been widely studied over the past decade [1, 2, 4, 5, 23, 25, 27, 32–
34]. Most existing works consider the “stochastic” setting where {fm

t }’s are sampled from
a distribution specified in advance. However, real-world applications may have distribution
shifts, unmodeled perturbations, or even an adversarial sequence of cost functions, all of

© K.K. Patel, A. Saha, L. Wang & N. Srebro.



Distributed Online and Bandit Convex Optimization

which violate the fixed distribution assumption. To alleviate this issue, in this paper,
we extend our understanding of distributed online optimization to “adaptive” adversaries
that could potentially generate a worst-case sequence of cost functions. Although some
recent works have underlined the importance of the adaptive setting [3, 9, 10, 16, 18], our
understanding of the optimal regret guarantees for problem (1) is still lacking.

We first show that, under usual assumptions, there is no benefit of collaboration if all the
machines have access to the gradients, a.k.a. first-order feedback for their cost functions.
Specifically, in this setting, running online gradient descent on each device without any
communication is min-max optimal for problem (1). Thus, we move to the harder setting
of bandit convex optimization with two-point feedback. We study a natural variant of
FedAvg equipped with a stochastic gradient estimator due to Shamir [22]. We show that
collaboration reduces the variance of the stochastic gradient estimator and is thus beneficial
for problems of high enough dimension. We prove a linear speedup in the number of
machines for high-dimensional problems, which mimics the stochastic setting [28, 31].

2. Setting
This section introduces notations, definitions, and assumptions used in our analysis.

Notation. We denote the horizon by T = KR. ⪰,⪯,∼= denote inequalities up to numerical
constants. We denote the average function by ft(·) := 1

M

∑
m∈[M ] f

m
t (·) for all t ∈ [T ].

We use 1A to denote the indicator function for the event A. Our model space is denoted
by X ⊆ Rd. We denote the expected averaged regret by Reg(M,K,R) in all the settings.

Function classes. We consider two common [13, 21] function classes in this paper: (i)
FG,B, the class of convex, differentiable, non-negative and G-Lipschitz functions, i.e.,
∀x, y ∈ X , |f(x) − f(y)| ≤ G ∥x− y∥2, with bounded optima, i.e., ∥x⋆∥2 ≤ B, ∀ x⋆ ∈
argminx∈X f(x); (ii) FH,B, the class of convex, differentiable, non-negative and H-smooth
functions, i.e., ∀x, y ∈ X , ∥∇f(x)−∇f(y)∥2 ≤ H ∥x− y∥2, with bounded optima. FG,B

includes linear cost functions denoted by FG,B
lin , while FH,B consists of quadratic functions.

We also define FG,H,B := FG,B ∩FH,B.

Adversary model. Note that in the most general setting, each machine will face arbitrary
functions from a class F at each time step. Our algorithmic results are for this general
model, which is usually referred to as an “adaptive” adversary. We also consider a weaker
“stochastic” adversary model to aid comparison. More specifically, the adversary cannot
adapt to the sequence of the models used by each machine but must fix a distribution in
advance for each machine, i.e., ∀m ∈ [M ], Dm ∈ ∆(F) such that at each time t ∈ [T ],
fm
t ∼ Dm. An example of this easier model is distributed stochastic optimization where
fm
t (·) := f(·; zmt ∼ Dm) ∈ F for f(·; ·) ∈ F .

Oracle model. We consider two kinds of access to the cost functions in this paper. Each
machine m ∈ [M ] for all time steps t ∈ [T ] has access to one of the following: (i) gradient
of fm

t at a single point, a.k.a., first-order feedback; or (ii) function values of fm
t at two

different points, a.k.a., two-point bandit feedback.
We consider two more assumptions controlling how similar the cost functions look across

machines and the average regret at the comparator [24]:

2



Distributed Online and Bandit Convex Optimization

Assumption 1 1 ∀ t ∈ [T ], x ∈ X , 1
M

∑
m∈[M ] ∥∇fm

t (x)−∇ft(x)∥22 ≤ ζ2 ≤ 4G2.

Assumption 2 ∀ x⋆ ∈ argminx∈X
∑

t∈[T ] ft(x),
1
T

∑
t∈[T ] ft(x

⋆) ≤ F⋆. For non-negative
functions in FG,H,B , this implies 1

T

∑
t∈[T ] ∥∇ft(x⋆)∥

2
2 ≤ HF⋆ (c.f., Lemma 4.1 [24]).

Min-max regret. We can finally define our problem class. We use PM,K,R(F) := F⊗MKR

to denote all selections of MKR functions from a class F . We use the argument ζ, F⋆ to
further restrict this to selections that satisfy Assumptions 1 and 2 respectively. Furthermore,
with a slight abuse of notation, we use the superscript 1 to denote first-order feedback
and (0, 2) to denote two-point zeroth-order feedback to the cost functions. In this paper,
we consider four problem classes: P1

M,K,R(FG,D, ζ), P0,2
M,K,R(FG,B, ζ), P1

M,K,R(FH,B, ζ, F⋆),
P0,2
M,K,R(FG,H,B , ζ, F⋆). And we are interested in characterizing the min-max regret for

these classes. In particular, for a problem class P, we want to characterize up to numerical
constants the following quantity:

R(P) := min
A

max
P∈P

EA

 1

MT

∑
t∈[T ],m∈[M ]

fm
t (xmt )−min

x∈X

1

MT

∑
t∈[T ],m∈[M ]

fm
t (x)

 , (2)

where A is a randomized algorithm producing models xmt ’s. For stochastic adversaries, the
expectation is also taken over the randomness of sampling from the distributions Dm ∈
∆(F).

3. Collaboration doesn’t help with First-order Feedback
We first consider the class P1

M,K,R(FG,B, ζ). Note the following bound is always true for
any stream of functions and sequence of models:

1

M

∑
m∈[M ]

 ∑
t∈[KR]

fm
t (xmt )− min

xm∈X

∑
t∈[KR]

fm
t (xm)

 ≥ 1

M

∑
t∈[KR],m∈[M ]

fm
t (xmt )−min

x∈X

∑
t∈[KR]

ft(x).

This means we can upper bound regret in equation 1 by running online gradient descent
(OGD) independently on each machine and not collaborating at all. In other words:

R
(
P1
M,K,R(FG,D, ζ)

)
⪯ R

(
P1
1,K,R(FG,D)

) ∼= GB√
T
. (3)

The min-max rate for a single machine follows classical results using vanilla OGD (c.f.,
Theorem 3.1 in [13]). But can collaborative algorithms beat this natural baseline? No!

Consider the problem where the functions don’t vary across the machines but may
change with time. This problem satisfies Assumption 1 with ζ = 0. In this problem, the
machines jointly see only T different functions but can make M first-order queries to the
functions at each time step. However, these additional queries are not useful as there is

1. Woodworth et al. [30] consider a more relaxed assumption in the stochastic setting: ∀ x ∈
X , 1

M

∑
m∈[M ] ∥Ez∼Dm [∇f(x; z)]−∇f(x)∥22 ≤ ζ2 ≤ 4G2 for f(·) := 1

M

∑
m∈[M ] Ez∼Dm [∇f(x; z)].
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a known sample-complexity lower bound of GB/
√
T for P1

1,K,R(FG,B) (c.f., Theorem 3.2
[13]) which holds for any number of first-order queries at each time step. This implies that,

GB√
T
∼= R

(
P1
1,K,R(FG,D)

)
⪯ R

(
P1
M,K,R(FG,B, ζ)

)
. (4)

Combining equations (3) and (4), we conclude that R
(
P1
M,K,R(FG,B, ζ)

)
∼= GB/

√
T . Or

in other words, there is no benefit of collaboration when the machines have first-order
feedback.

We recall several interesting functions, such as quadratics, that don’t lie in FG,B but
lie in FH,B. To understand the latter class we look at problems in P1

M,K,R(FH,B, ζ, F⋆). In
the single machine setting, we know that OGD incurs a regret of HB2/T +

√
HF⋆B/

√
T

(c.f., Theorem 3 [24]). This serves as the non-collaborative baseline. Unfortunately, there
is again a matching sample complexity lower bound for P1

1,K,R(FH,B , F⋆) (c.f., Theorem 4
[28]). Using a similar argument as before, we can obtain that,

R(P1
M,K,R(FH,B , ζ, F⋆)) ∼=

HB2

T
+

√
HF⋆B√

T
, (5)

which suggests that regret doesn’t improve with collaboration, either.
Thus, when the machines have first-order feedback for their own objectives, they do not

benefit from collaboration. The commonality between these problems is that even when the
functions are the same across the machines, the hardest instances within the problem class
do not benefit from the additional gradient accesses. This is not surprising because linear
functions are the hardest Lipschitz and smooth functions in the adversarial online setting,
and they are fully specified by their gradient. This suggests that we should consider settings
where machines have weaker oracles than first-order and may benefit through collaboration.
One such setting is with stochastic first-order oracles because, with additional stochastic
gradients, the machines can reduce the variance of their gradient estimator. This is one
mechanism through which collaboration helps in the stochastic setting [28, 31], and we see
next that it naturally arises in bandit convex optimization.

4. Online Local SGD Algorithm with Two-point Bandit Feedback
In this section, we study distributed bandit convex optimization with two-point feedback
[6, 22], i.e., at each time step, the machines can query the value (and not the full gradient)
of their cost functions at two different points. We analyze the online variant of the FedAvg
or Local-SGD algorithm, which is common in the stochastic setting. We call the algorithm
FedOSGD and describe it in Algorithm 1. In line 7, we use the stochastic gradient estimator,
originally proposed by Shamir [22] and based on a similar estimator by Duchi et al. [6]. For
a smoothed version of the function f̂m

t (x) := Eu[f
m
t (x + δu)], this estimator satisfies (c.f.,

Lemmas 3 and 5 [22]) for all t ∈ [T ], m ∈ [M ] and x ∈ X ,

Eu[g
m
t (x)] = ∇f̂m

t (x) and Eu

[∥∥∥gmt (x)−∇f̂(x)
∥∥∥2
2

]
⪯ dG2.

Equipped with this gradient estimator, we can prove the following guarantee for P1,σ
M,K,R(FG,B, ζ).
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Algorithm 1: FedOSGD (η, δ) with two-point bandit feedback
1 Initialize xm0 = 0 on all machines m ∈ [M ]
2 for t ∈ {0, . . . ,KR − 1} do
3 for m ∈ [M ] in parallel do
4 Sample umt ∼ Unif(Sd−1), i.e., a random unit vector
5 Query function fm

t at points (xm,1
t , xm,2

t ) := (xmt + δumt , xmt − δumt )
6 Incur loss (fm

t (xmt + δumt ) + fm
t (xmt − δumt ))

7 Compute stochastic gradient at point xmt as gmt =
d(f(xm

t +δum
t )−f(xm

t −δum
t ))um

t
2δ

8 if (t+ 1) mod K = 0 then
9 Communicate to server: (xmt − η · gmt )

10 On server xt+1 ← 1
M

∑
m∈[M ] (x

m
t − η · gmt )

11 Communicate to machine: xmt+1 ← xt+1

12 else
13 xmt+1 ← xmt − η · gmt

Theorem 1 Consider the problem class P0,2
M,K,R(FG,B, ζ). With η = B

G
√
T
·min

{
1,

√
M√
d
, 1
1K>1

√
Kd1/4

}
,

the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function

queries.

When K = 1, the above bound reduces to the first two terms, which are known to be
tight for two-point bandit feedback [6, 13] (see Appendix A), making FedOSGD optimal.
When K > 1, we would like to compare our results to the non-collaborative baseline as we
did in section 3. Using the gradient estimator proposed by Shamir [22], the non-collaborative
baseline gets regret O

(
GB
√
d/
√
KR

)
. Thus, as long as d ⪰ K2, FedOSGD is better than

the non-collaborative baseline. Furthermore, if d ⪰ K2M2, then the second term in the
upper bound dominates, and FedOSGD gets a “linear speed-up” in the number of machines.
Unfortunately, the bound doesn’t improve with smaller ζ.

Note that the lipschitzness assumption is crucial to the two-point gradient estimator in
algorithm 1. While there are gradient estimators that don’t require lipschitzness or bounded
gradients [8], they do require stronger assumptions such as bounded function values. To
avoid making these assumptions, we skip looking at the problems in P0,2

M,K,R(FH,B , ζ, F⋆)

and look at the problems in P0,2
M,K,R(FG,H,B , ζ, F⋆).
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Theorem 2 Consider the problem class P0,2
M,K,R(FG,H,B , ζ, F⋆). With appropriate η (c.f.,

lemma 6), the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ HB2

KR
+

GB
√
d√

MKR
+

GB√
KR

+

√
HF⋆B√
KR

+ 1K>1 ·min

{
H1/3B4/3G2/3d1/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3

+

√
ζGBd1/4

K1/4
√
R

+
ζB√
R
,
GBd1/4

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function

queries. The regret is also upper bounded as in theorem 1 for the corresponding step size.

The above result is a bit technical, so to interpret it, we consider the simpler class FG,B
lin

of linear functions with bounded gradients. Linear functions are the “smoothest” Lipschitz
functions as their smoothness constant H = 0. We can get the following guarantee for this
class:

Corollary 3 Consider the problem class P0,2
M,K,R(F

G,0,B
lin , ζ, F⋆). With appropriate η (c.f.,

lemma 6), the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

(√
ζGBd1/4

K1/4
√
R

+
ζB√
R

)
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function

queries.

Unlike general Lipschitz functions, the last two terms are zero for linear functions when
ζ = 0 and the upper bound is smaller for smaller ζ. In fact, when K = 1 or ζ = 0,
the upper bound is tight [6]. More generally, when K ≤ max(1, G2ζ2d,G2d/ζ2M2) then
FedOSGD is optimal. Recall that in this setting, the non-collaborative baseline obtains
a regret [24] of O(GB

√
d/
√
KR). Thus, the benefit of collaboration through FedOSGD

again appears in high-dimensional problems in P0,2
M,K,R(FG,H,B , ζ, F⋆) similar to what we

discussed for P0,2
M,K,R(FG,B, ζ, F⋆).

5. Conclusion
In this paper, we show that, in the adaptive bandit setting, the benefit of collaboration is
very similar to the stochastic setting, where the collaboration is useful when: (i) There is
stochasticity in the problem and (ii) The variance of the gradient estimators is “high” [31]
and reduces with collaboration. There are several open questions and directions:

1. Does collaboration provably not help for the smaller class P1
M,K,R(FG,H,B , ζ, F⋆)? This

might require new proof techniques.
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2. Is the final term tight in Theorems 1 and 2? We don’t know any lower bounds in
the intermittent communication setting against an adaptive adversary. Perhaps there
is no gap between the stochastic and adaptive adversaries, and we can use existing
techniques and online-to-batch conversion to provide a tight lower bound.

3. When K is large, but R is a fixed constant, the average regret of the non-collaborative
baseline goes to zero, but our upper bounds for FedOSGD don’t. It is unclear if our
analysis is loose or if we need to modify the algorithm, for instance, add projection
steps.

4. How to obtain second-order methods in the distributed online setting, especially in
the intermittent communication setting? This only makes sense when the worst-case
functions are not linear, which we might expect in the distributed setting [26].

5. For stochastic linear bandits, collaborative methods have been shown to attain optimal
regret with very few rounds of communication [14]. What structures in the problem
can we further exploit to reduce communication?
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Appendix A. Proof of Theorem 1
In this section and the next one, we consider access to a first-order stochastic oracle as
an intermediate step before considering the zeroth-order oracle. Specifically, each machine
has access to a stochastic gradient gmt of fm

t at point xmt , such that it is unbiased and has
bounded variance, i.e., for all x ∈ X ,

E[gmt (xmt )|xmt ] = ∇fm
t (xmt ) and E

[
∥gmt (xmt )−∇fm

t (xmt )∥22 |x
m
t

]
≤ σ2.

In algorithm 1, we constructed a particular stochastic gradient estimator at xmt with σ2 =
G2d. We can define the corresponding problem class P1,σ

M,K,R(FG,B, ζ) when the agents can
access a stochastic first-order oracle. We prove the following lemma about this problem
class:

Lemma 4 Consider the problem class P1,σ
M,K,R(FG,B, ζ). If we choose η = B

G
√
T
·min

{
1, G

√
M

σ ,
√
G

1K>1

√
σK

, 1
1K>1

√
K

}
, then the models {xmt }

T,M
t,m=1 of Algorithm 1 satisfy the following guar-

antee:

1

MKR

∑
t∈[KR],m∈[M ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯ GB√
KR

+
σB√
MKR

+ 1K>1 ·

(√
σGB√
R

+
GB√
R

)
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the stochastic gradients.

Proof Consider any time step t ∈ [KR] and define ghost iterate x̄t =
1
M

∑
m∈[M ] x

m
t (which

not might actually get computed). If K = 1, the machines calculate the stochastic gradient
at the same point, x̄t. Then using the update rule of Algorithm 1, we can get the following:

Et

[
∥x̄t+1 − x⋆∥22

]
= Et

∥∥∥∥∥∥x̄t − ηt
M

∑
m∈[M ]

∇fm
t (xmt )− x⋆ +

ηt
M

M∑
m=1

(∇fm
t (xmt )− gmt (xmt ))

∥∥∥∥∥∥
2

2


= ∥x̄t − x⋆∥22 +

η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨x̄t − x⋆,∇fm
t (xmt )⟩+ η2t σ

2

M

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨xmt − x⋆,∇fm
t (xmt )⟩

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M

≤ ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆))

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M
,

11
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where Et is the expectation conditioned on the filtration at time t under which xmt ’s are
measurable, and the last inequality is due to the convexity of each function. Re-arranging
this leads to

1

M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆)) ≤ 1

2ηt

(
∥x̄t − x⋆∥22 − Et

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

+ 1K>1 ·
1

M

∑
m∈[M ]

Et ⟨xmt − x̄t,∇fm
t (xmt )⟩+ ηtσ

2

2M

≤ 1

2ηt

(
∥x̄t − x⋆∥22 − Et

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2

(
G2 +

σ2

M

)
+ 1K>1 ·

G

M

∑
m∈[M ]

E [∥xmt − x̄t∥2] . (6)

The last inequality comes from each function’s G-Lipschitzness. For the last term in (6),
we can upper bound it similar to lemma 8 in Woodworth et al. [30] to get that

1

M

∑
m∈[M ]

E [∥xmt − x̄t∥2] ≤ 2(σ +G)Kη. (7)

Plugging (7) into (6) and choosing a constant step-size η, and taking full expectation we
get

1

M

∑
m∈[M ]

E [fm
t (xmt )− fm

t (x⋆)] ≤ 1

2η

(∥∥∥E [x̄t − x⋆]2
∥∥∥
2
− E

[
∥x̄t+1 − x⋆∥22

])
+

η

2

(
G2 +

σ2

M

)
+ 1K>1 · 2G(σ +G)Kη.

Summing this over time t ∈ [KR] we get,

1

M

∑
m∈[M ],t∈[T ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯
∥x̄0 − x⋆∥22

η
+ η

(
G2 +

σ2

M
+ 1K>1 · σGK + 1K>1 · ζGK

)
T

⪯ B2

η
+ η

(
G2 +

σ2

M
+ 1K>1 · σGK + 1K>1 ·G2K

)
T.

Finally choosing,

η =
B

G
√
T
·min

{
1,

G
√
M

σ
,

√
G

1K>1

√
σK

,
1

1K>1

√
K

}
,

we can obtain,

1

M

∑
m∈[M ],t∈[T ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯ GB
√
T + 1K>1 ·

√
σGB

√
KT + 1K>1 ·GB

√
KT +

σB
√
T√

M
.

(8)
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Dividing by KR finishes the proof.

Remark 5 Note that when K = 1, the upper bound in Lemma 4 reduces to the first two
terms, both of which are known to be optimal due to lower bounds in the stochastic setting,
i.e., against a stochastic online adversary [13, 19]. We now use this lemma to guarantee
bandit two-point feedback oracles for the same function class. We recall that one can
obtain a stochastic gradient for a “smoothed-version” f̂ of a Lipschitz function f at any
point x ∈ X , using two function value calls to f around the point x [6, 22].

With this lemma, we can prove Theorem 1.

Theorem 1 Consider the problem class P0,2
M,K,R(FG,B, ζ). With η = B

G
√
T
·min

{
1,

√
M√
d
, 1
1K>1

√
Kd1/4

}
,

the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function

queries.

Proof First, we consider smoothed functions

f̂m
t (x) := Eu∼Unif(Sd−1)[f

m
t (x+ δu)],

for some δ > 0 and Sd−1 denoting the euclidean unit sphere. Based on the gradient estimator
in (??) proposed by Shamir [22] (which can be implemented with two-point bandit feedback)
and Lemma 4, we can get the following regret guarantee (noting that σ ≤ c1

√
dG for a

numerical constant c1, c.f., [22]):

E

 1

MKR

∑
t∈[KR],m∈[M ]

f̂m
t (x̂mt )

− 1

MKR

∑
t∈[KR],m∈[M ]

f̂m
t (x⋆) ⪯ GB√

KR
+

GB
√
d√

MKR
+1K>1·

GBd1/4√
R

,

where the expectation is w.r.t. the stochasticity in the stochastic gradient estimator. To
transform this into a regret guarantee for f we need to account for two things:

1. The difference between the smoothed function f̂ and the original function f . This is
easy to handle because both these functions are pointwise close, i.e., supx∈X |f(x) −
f̂(x)| ≤ Gδ.

2. The difference between the points x̂mt at which the stochastic gradient is computed
for f̂m

t and the actual points xm,1
t and xm,2

t on which we incur regret while making
zeroth-order queries to fm

t . This is also easy to handle because due to the definition
of the estimator in ??, xm,1

t , xm,1
t ∈ Bδ(x̂

m
t ), where Bδ(x) is the L2 ball of radius δ

around x.
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In light of the last two observations, the average regret between the smoothed and original
functions only differs by a factor of 2Gδ, i.e.,

E

 1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

fm
t (xm,j

t )

− 1

MKR

∑
t∈[KR],m∈[M ]

fm
t (x⋆)

⪯ Gδ +
GB√
KR

+
GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

⪯ GB√
KR

+
GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where the last inequality is due to the choice of δ such that δ ⪯ Dd1/4√
R

(
1 + d1/4√

MK

)
.

Appendix B. Proof of Theorem 2
Similar to before, we start by looking at P1,σ

M,K,R(FG,H,B , ζ, F⋆). We first prove the following
Lemma:

Lemma 6 Consider the problem class P1,σ
M,K,R(FG,H,B , ζ, F⋆). The models {xmt }

T,M
t,m=1 of

Algorithm 1 with appropriate η (specified in the proof) satisfy the following regret guarantee:

1

MKR

∑
t∈[KR],m∈[M ]

E [fm
t (xmt )− fm

t (x⋆)] ⪯ HB2

KR
+

σB√
MKR

+min

{
GB√
KR

,

√
HF⋆B√
KR

}
,

+ 1K>1 ·min

{
H1/3B4/3σ2/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3
+

√
ζσB

K1/4
√
R

+
ζB√
R
,

√
GσB

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the stochastic gradients.

The models also satisfy the guarantee of lemma 4 with the same step-size.

Proof Consider any time step t ∈ [KR] and define ghost iterate x̄t =
1
M

∑
m∈[M ] x

m
t (which

not might actually get computed). Then using the update rule of Algorithm 1, we can get:

Et

[
∥x̄t+1 − x⋆∥22

]
= Et

∥∥∥∥∥∥x̄t − ηt
M

∑
m∈[M ]

∇fm
t (xmt )− x⋆ +

ηt
M

M∑
m=1

(∇fm
t (xmt )− gmt (xmt ))

∥∥∥∥∥∥
2

2

 ,

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨x̄t − x⋆,∇fm
t (xmt )⟩+ η2t σ

2

M

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨xmt − x⋆,∇fm
t (xmt )⟩

14
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+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M

≤ ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆))

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xmt − x̄t,∇fm
t (xmt )⟩+ η2t σ

2

M
,

where Et is the expectation taken with respect to the filtration at time t, and the last line
comes from the convexity of each function. Re-arranging this and taking expectation gives
leads to

1

M

∑
m∈[M ]

E (fm
t (xmt )− fm

t (x⋆)) ≤ 1

2ηt

(
E ∥x̄t − x⋆∥22 − E

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

+ 1K>1 ·
1

M

∑
m∈[M ]

E ⟨xmt − x̄t,∇fm
t (xmt )⟩+ ηtσ

2

2M
(9)

Bounding the blue term. We consider two different ways to bound the term. First note
that similar to lemma 4 we can just use the following bound,

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

≤ ηtG
2

2
(10)

However, since we also have smoothness, we can use the self-bounding property (c.f., Lemma
4.1 [24]) to get,

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xmt )

∥∥∥∥∥∥
2

2

≤ ηtH

2M

∑
m∈[M ]

(fm
t (xmt )− fm

t (x⋆)) +
ηtH

2M

∑
m∈[M ]

fm
t (x⋆) (11)

Bounding the red term. We will bound the term in three different ways. Similar to lemma
4, we can bound the term after taking expectation and then bounding the consensus term
similar to Lemma 8 in Woodworth et al. [30] as follows,

1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )⟩] ≤ G

M

∑
m∈[M ]

E [∥xmt − x̄t∥2]

≤ 2G(σ +G)

τ(t)+K−1∑
t′=τ(t)

ηt′ , (12)

where τ(t) maps t to the last time step when communication happens. Alternatively, we
can use smoothness as follows after assuming ηt ≤ 1/2H,
1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )⟩] = 1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )−∇ft(x̄t)⟩] ,
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≤

√√√√ 1

M

∑
m∈[M ]

E ∥xmt − x̄t∥22

√√√√ 1

M

∑
m∈[M ]

E ∥∇fm
t (xmt )−∇ft(x̄t)∥22,

≤

√√√√ 1

M

∑
m∈[M ]

E ∥xmt − x̄t∥22

√√√√ 2

M

∑
m∈[M ]

H2E ∥xmt − x̄t∥22 + 2ζ2,

≤ 2H

M

∑
m∈[M ]

E ∥xmt − x̄t∥22 + 2ζ

√√√√ 1

M

∑
m∈[M ]

E ∥xmt − x̄t∥22,

≤ 2η2tH(σ2K + ζ2K2) + 2ηtζ(σ
√
K + ζK), (13)

where we used lemma 8 from Woodworth et al. [30] in the last inequality. We can also use
the lipschitzness and smoothness assumption together with a constant step size η < 1/2H
to obtain,

1

M

∑
m∈[M ]

E [⟨xmt − x̄t,∇fm
t (xmt )⟩] ≤ G

M

∑
m∈[M ]

E [∥xmt − x̄t∥2]

≤ ηG(σ
√
K + ζK). (14)

Combining everything. After using a constant step-size η, summing (9) over time, we can
use the upper bound of the red and blue terms in different ways. If we plug in (10) and
(12) we recover the guarantee of lemma 4. This is not surprising because FG,H,B ⊆ FG,B.
Combining the upper bounds in all other combinations assuming η < 1

2H , we can show the
following upper bound

Reg(M,K,R)

KR
⪯ HB2

KR
+

σB√
MKR

+min

{
GB√
KR

,

√
HF⋆B√
KR

}
,

+ 1K>1min

{
H1/3B4/3σ2/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3
+

√
ζσB

K1/4
√
R

+
ζB√
R
,

√
GσB

K1/4
√
R

+

√
GζB√
R

}
,

where we used step size,

η = min

{
1

2H
,
B
√
M

σ
√
KR

,max

{
B

G
√
KR

,
B√

HF⋆KR

}
,

1

1K>1
·max

{
min

{
B2/3

H1/3σ2/3K2/3R1/3
,

B2/3

H1/3ζ2/3KR1/3
,

B

K3/4
√
ζσR

,
B

ζK
√
R

}
,

min

{
B

K3/4
√
GσR

,
B

K
√
ζGR

}}}

This finishes the proof.

It is now straightforward to prove Theorem 2 similar to the proof for Theorem 1 by
replacing σ2 with G2d:
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Theorem 2 Consider the problem class P0,2
M,K,R(FG,H,B , ζ, F⋆). With appropriate η (c.f.,

lemma 6), the queried points {xm,j
t }

T,M,2
t,m,j=1 of Algorithm 1 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ HB2

KR
+

GB
√
d√

MKR
+

GB√
KR

+

√
HF⋆B√
KR

+ 1K>1 ·min

{
H1/3B4/3G2/3d1/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3

+

√
ζGBd1/4

K1/4
√
R

+
ζB√
R
,
GBd1/4

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the choice of function

queries. The regret is also upper bounded as in theorem 1 for the corresponding step size.
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